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PHY102 Electricity 

Topic 2 (Lectures 2 & 3) – Electric Fields 

In this topic, we will cover: 

1) Electric Fields 
2) Field Lines 
3) Electric Fields and Conductors 

4) Electric Dipoles in an Electric Field 

Reading from Young & Freedman: 

For this topic, read sections 21.4 to 21.7. 

Introduction
We have seen that Coulomb’s law, like Newton’s law of gravitation, involves action at a 

distance – one charge is affected by another with no physical contact between them.  One way to 
envisage how this occurs is to consider that one charge modifies the properties of the space around 
it, and the other charge then responds to these modifications.  This modification of the space is 
known as an electric field. 

The Electric Field
Consider the electric field surrounding a static point charge Q.  The field at a given position 

can be defined by the force produced by Q on a small test charge qt at that point.  The electric field 
strength E is equal to the force per unit charge at that point: 

tq
=

F
E [1] 

From this definition, we can see that the S.I. unit for electric field strength is Newton per 
Coulomb (N C–1).  Note that E is a vector, with direction given by the force experienced by the 
(positive) test charge.  Applying Coulomb’s law for a point charge Q (see previous topic) 

t

2

0

ˆ
4

Qq

r
=

πε
F r  [2] 

we obtain the electric field about a point charge 

2

0

ˆ
4

Q

r
=

πε
E r . [3] 

Equation [3] is only valid for a point charge.  For a system of point charges, we can apply the 
principle of linear superposition as we did before, calculating a resultant field strength which is 
equal to the vector sum of the field strengths due to each of the individual charges. 

1 2 3 N i= + + + + =�E E E E E E�  [4] 

Once the resultant field strength is known, the force on any charge q can be found from the 
definition of E given in [1], so 

q=F E . [5] 

Note that E is the field strength calculated from all other charges present, not including q itself!  If q
is positive, the direction of the force is that of the field strength; if q is negative, the direction of the 
force is opposite to the field. 
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Field Lines or Lines of Force
We can represent an electric field diagrammatically by drawing field lines or lines of force.  

These represent the direction of the electric field at each point in space, so show the direction a 
(small) free charge would tend to follow.  Field lines obey the following rules: 

1) Electrostatic field lines always start on 
positive charges and end on negative 
charges. 

2) The number of lines originating from, 
or terminating on, a charge is 
proportional to the magnitude of the 
charge. 

3) The direction of the field at a point is 
given by the tangent to the field line at 
that point. 

4) The field strength is equal to the 
density of lines, that is the number of 
lines per unit area (where the area is on 
a surface normal to the field). 

 Opposite charges Like charges 

5) Lines of field never cross (since the direction of force on a test charge would be ill-defined at a 
point where lines crossed). 

The diagram shows field lines around pairs of like and opposite charges. 

Electric Field and Conductors
When a conductor is placed in a region of electric field, the 

free electrons within it respond to the force on their (negative) 
charge.  If the applied external field is Eext, the electrons move in 
a direction opposite to Eext, as shown in the sketch.  As they do 
so, they leave unbalanced positive charges behind, and these 
charges in the metal generate an internal field Eint opposite in 
direction to Eext.  The electrons will continue to move until Eint = 
Eext; once this condition is met, the net electric field inside the 
conductor is zero, and no further charge flows. 

Eext

+
+
+
+

+
+

–

–
–

–

–
–

Eint

Under static conditions, the net electric field within the material of a conductor is zero. 

Note that the resulting field just outside the conductor will be the resultant of that due to the 
applied field and the displaced charges.  Consider a resulting field at an angle to the surface of the 
conductor.  We can resolve this into components parallel to and perpendicular to the local surface.  
The free electrons at the surface of the conductor will move in response to the component parallel to 
the surface, and quickly reduce this component to zero.  Therefore the resulting field can only be 
perpendicular to the surface. 

Under static conditions, the electric field at all points on the surface of a conductor is normal to 

that surface. 

We shall shortly also show one other fact about conductors and electric charge: 

Under static conditions, all the (unbalanced) electric charge resides on the surface of the 

conductor. 

Continuous Charge Distributions
In the last lecture, we saw how the force, and therefore the field, due to a number of point

charges can be evaluated using superposition.  In order to find the field due to a continuous

distribution, we must consider the charge divided up into infinitesimal elements dq which may be 
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considered as point charges.  The infinitesimal contribution to the total field produced by such an 
element is  

2

0

d
ˆd

4

q

r
=

πε
E r  [6] 

where r is the vector from the charge element to the point where the field is considered.  To 
determine the total field due to the distributed charge, the vector sum over the whole distribution of 
all such contributions must be evaluated by means of an integral: 

2

0

d
ˆ

4

q

r
=

πε�E r . [7] 

In practice, to evaluate the integral it is necessary to express dq in terms of r, as we will illustrate in 
the examples.  We often need to consider charge distributed along a line, over a surface or 
throughout a volume.  This leads to the concept of a variety of charge densities. 

1) Volume charge density (or simply charge density) ρ.  Units C m–3.  dq = ρ dV where dV is an 
element of volume. 

2) Surface charge density σ.  Units C m–2.  dq = σ dA where dA is an element of area. 

3) Linear charge density λ.  Units C m–1.  dq = λ dl where dl is an element of length. 

Electric Dipoles
A pair of equal and opposite charges separated by some distance is known as an electric 

dipole.  If the charges have a magnitude Q and their separation is d, their dipole moment p is given 
by: 

Q=p d [8] 

where d is a vector pointing from the negative to the positive charge (so p points in the same 
direction). 

When a dipole is placed in a uniform electric field E, it 
experiences no net force, as the two charges feel equal and 
opposite forces.  However, since the two forces do not act 
through the same point, there is a moment or torque acting on the 
dipole.  Consider the positive charge.  It experiences a force 

Q=F E .  The negative charge experiences an equal and opposite 

force, so the torque τ is given by one force multiplied by their 

perpendicular separation, sin sin sinFd QEd pEτ = θ = θ = θ . 

Eext

+ 

– 

d 

F 

F 

�

The vector expression for the torque is thus 

= ×� p �  [9] 

The dipole tends to align itself with an applied external electric field.  This means that it takes work 
(provided by an opposing torque or pair of forces) to rotate the dipole against the field, resulting in 
an increasing potential energy of the dipole.  Defining this potential energy as zero when p is 

perpendicular to E, we can see that in rotating to an angle θ as shown the dipole does work given by 

force×displacement = 
2

cosdF θ  against the applied force for each charge, so its potential energy is 

reduced by this amount.  The overall potential energy of the dipole is thus 

cosU pE= − θ = − ⋅p E  [10] 
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Putting What You Have Learnt Into Practice

Question 2.1 

One point charge Q1 = 20 µC is placed at (–d, 0) and 

another Q2 = –10 µC at (+d, 0) as shown.  Find the 
resulting field strength at a point with coordinates 
(x,y), where d = 1.0 m and x = y = 2 m. 

Solution 

The charges, electric field vectors and coordinates 
are shown opposite. 

x 
Q1

E2 

�1 
+ 

Q2

y 
P E1 

�2 

–d d 

r1 

r2 

– 

By Pythagoras’ theorem 

( )2 2
1 13 3.6 mr x d y= + + = = ( )2 2

2 5 2.2 mr x d y= − + = =

The magnitudes of the electric fields are therefore
5

1
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E

r
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5
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The components of the resulting field strength, E = E1 + E2, are 

1 2 1 1 2 2cos cosx x xE E E E E= + = θ − θ 1 2 1 1 2 2sin siny y yE E E E E= + = θ − θ . 

From the diagram, 1
1

sin
y

r
θ = , 2

2

sin
y

r
θ = , 1

1

cos
x d

r

+
θ = , 2

2

cos
x d

r

−
θ = . 

Hence 

4 4

3 1

3 1
1.4 10 1.8 10

3.6 2.2

3.5 10  N C

xE

−

= × − ×

= ×

4 4

3 1

2 2
1.4 10 1.8 10

3.6 2.2

8.6 10  N C

yE

−

= × − ×

= − ×

So 
3 3 13.5 10 8.6 10  NC−= × − ×E i j

Question 2.2 

A rod of length l has a total charge Q distributed 
uniformly along its length.  Calculate the electric field 
at a point P located along the long axis of the rod and a 
distance a from one end. 

x 

dx

x 

l 
a 

P 

Solution 

Assume the rod is lying along the x-axis as shown, running from x = 0 to x = l.  The charge density 

is given by 
Q

l
λ = , and if an element has length dx it carries an elemental charge d dQ x= λ . 

The distance from this element to point P is given by ( )a l x+ − , so the field at P due to the element 

is in the x-direction, with a magnitude 

( ) ( )
2 2

0 0

d d
d

4 4

q x
E

a l x a l x

λ
= =

πε + − πε + −
. 

Since the field due to all other elements lies in the same direction, the total field at P is given by 
integrating over the length of the rod: 
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( )

( ) ( )

2

000 0

0 0 0

d 1

44

1 1

4 4 4

ll
x

E
a l xa l x

a l a l

a a l a a l a a l

λ λ 	 

= = � �πε + −
 �πε + −

λ λ + − λ� �
= − = =� �

πε + πε + πε +� �

�

Exploiting the fact that l Qλ = , this can then be written as 

( )04

Q
E

a a l
=

πε +

[We can check that this answer is reasonable as follows.  If a l� , the rod will behave as a point 

charge.  The expression above then reduces to 
2

04

Q
E

a
≈

πε
 as expected.] 

Question 2.3 

A charge Q is uniformly distributed along the circumference of a 
thin ring of radius R.  What is the electric field at points along the 
axis of the ring? 

Solution 

Consider the ring to be made up of infinitesimal line segments ds

as shown.  Each of these, distributed around the ring, will 
contribute to the field at the point on the axis.  We can use 
symmetry to determine the direction of the resultant field; it must 
be parallel to the z-axis, as the horizontal component due to any 
point on the ring will be exactly balanced by that due to the point 
diametrically opposite on the ring. 

x 

θ

y 

dE

R 

z 

z 

r 

ds

The charge per unit length along the circumference is Q/2πR; hence the charge on the line segment 

ds is d d
2

Q
Q s

R
=

π
.  At a height z above the plane of the ring, the electric field due to this element 

of charge has magnitude 

2 2 2
00

d 1 d 1
d

4 24

Q Q s
E

Rr z R
= =

πε ππε +
. 

The z-component of this is  

( )
2 2 3/ 2

2 20 0

1 d cos 1 d
d

4 2 4 2
z

Q s Q s z
E

R Rz R z R

θ
= =

πε π πε π+ +

since 
2 2

cos z

z R
θ =

+
. 

The overall electric field is therefore 

( )
3/ 2

2 20

1
d

4 2
z

Q z
E s

R
z R

=
πε π +

� . 

The integrand has a constant value for all points around the ring, and so can be taken outside the 

integral, and ds�  is just the length of the circumference, 2πR. 
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We therefore arrive at a resultant field 

( )
3/ 2

2 20

1

4

Qz

z R

=
πε +

E k

[Once again, we can perform a couple of checks.  For z = 0, E = 0, as it clearly must do by 

symmetry.  For z R� , 
2

04

Q

z
≈

πε
E k  as would be expected when the distribution can be treated as 

a point charge.] 

Question 2.4 

What is the electric field generated by a disc of radius R carrying 

a uniform charge density σ C m–2, at a point a distance z from the 
disc and on the axis of the disc? 

Solution 

Consider the disc to be made up of concentric rings, of thickness 
dr, one of which is shown.  The charge dQ on this ring is equal to 

σ × its area, or 2 dr rπ σ .  As proved in the previous question, the 

contribution to the field at P due to one ring of radius r is  
x

dE

R

z

r 

dr

P 

y

( ) ( )
3/ 2 3/ 2

2 2 2 2
0 0

d d
d

4 2

Q z r z r
E

z r z r

σ
= =

πε + ε +
. 

The total field  

( )
3/ 2

2 2
00

d

2

R
r z r

E

z r

σ
=

ε +
� . 

This is easiest done by making the substitution   
2 2 d dr u r r u= � =

( ) ( )

( ) ( )

( ) ( )
[ ]

max

max

2

2

2
max3/ 2 3/ 2

2 2 2
0 00 0

1/ 2 1/ 2
2 2 20 0

0

1/ 2 1/ 2
2 20 0

d d
where

2 4

2 1 1

4 2

1
1 1 Qu4

2 2
1

uR

u

R

z

r z r z u
E u R

z r z u

z z

z
z u z R

z

z R

σ σ
= = =

ε + ε +

	 
 � �
σ σ � �� �

= − = − +� �� �ε ε � �+ +� �

 � � �

� �� �
� �σ � � σ

= − = −� �� �ε ε � �� �+ +
� � � �

� �



PHY102  Electricity  CNB 13

Question 2.5 

What is the electric field generated by a large sheet carrying a uniform charge density σ C m–2? 

Solution 

We can make use of the solution to the previous question by considering the field due to a disc in 
the limit that its radius R goes to infinity.  In that case, the above expression [Qu4] reduces to 

02
E

σ
=

ε
. 

The electric field is therefore constant, and no longer depends on z.  (This expression for E will 
appear later when we look at capacitors.) 

Problems from Young & Freedman for Topic 2: 

Try to do exercises 21.25 to 21.62 and 21.86 to 21.104.  The later problems 
are more challenging.  (Numerical answers to odd-numbered questions are 

available at the back of the book.) 


